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3.4: Mechanical Vibrations
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Another example of a mechanical sys-
tem is given by the simple pendu-
lum. In this example we have a mass
swinging at the end of a string of length
L. We will study the motion of the
mass through the counter-clockwise an-
gle & = 6(t). Applying the law of
the conservation of mechanical energy,
which states that the sum of the kinetic
and potential remains constant, we will
obtain our differential equation.
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Using the arc length formula for distance, we will get the kinetic energy is
given by T' = %mL2 (%)2. Its potential energy is given by V' = mg-L(1—cos6).
We obtain the differential equation
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The diagrams on the previous page illustrate the main topics of this sec-
tion. We wish to use linear differential equations to study the motion of a
mass attached to a spring. We see in both pictures the equilibrium posi-
tion, which is the resting position of the mechanical system.

We will take Fg = —kx to be the restorative force of the spring to its
equilibrium position. k& is known as the spring constant. We will take
Fr = —cv to be something like a shock absorber. ¢ is known as the damping

constant. Sometimes we will consider including also an external force F =
F(t). In total, the force acting on the mass is given by F' = Fs + Fr + Fg.
Using Newton’s Second Law of Motion, we get the differential equation

mz” + cx’ + kx = F(t). (2)

The case of free, undamped motion is called simple harmonic motion.
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Example 1. A body with mass m = % is attached to a spring that is stretched
2 m by a force of 100 N. It is set in motion with initial position zyp = 1 m and
initial velocity vg = —5 m/s. Find the position function of the body as well
as the amplitude, frequency, period of oscillation, and time lag of its motion.
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Next we consider free damped motion. /rkws
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Example 2. The mass and spring of Example 1 are now attached also to a

dashpot that provides 1 N of resistance for each meter per second of velocity. NLB"‘L

The initial position and velocity are the same as Example 1. Find the position .
function of the mass and the time it takes for it to pass four times through W,= '4} fz 'S
the initial position.
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Homework. 1-17 (odd), 24-26 (all)



